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Research

Formaldehyde is a ubiquitous chemical that 
has been the focus of many toxicological and 
epidemiological investigations. Epidemiological 
studies have found that formaldehyde is associ
ated with increased risk of childhood asthma 
(McGwin et al. 2010), acute respiratory tract 
illness (Tuthill 1984), sinonasal cancer (Luce 
et al. 1993), naso pharyngeal cancer (Vaughan 
et al. 2000), and possibly leukemia (Beane 
Freeman et al. 2009). In toxicological stud
ies, formaldehyde has been shown to cause 
nasal squamous cell carcinomas in rats (Kerns 
et al. 1983; Monticello et al. 1996) and, to 
a lesser extent, in mice (Kerns et al. 1983). 
Formaldehyde is currently classified as a known 
human carcinogen by the International Agency 
for Research on Cancer (IARC 2006).

Formaldehyde is present in both indoor 
and outdoor atmospheres. In indoor environ
ments, sources of formaldehyde include 
plywood, furniture, particle board, certain 
insulation materials, carpets, paints and var
nishes, textiles, tobacco smoke, and the use of 
formaldehyde as a disinfectant [IARC 2006; 
National Toxicology Program (NTP) 2011]. 
In outdoor environments, formaldehyde is 

produced as both a primary and secondary 
air pollutant via atmospheric photo chemistry 
(IARC 2006; NTP 2011). Some of the high
est formaldehyde exposures occur in occu
pational settings such as industries involving 
resin, plastics, wood, paper, insulation, tex
tiles, chemical productions, disinfectants, 
and embalming products (IARC 2006; 
NTP 2011). Formaldehyde is also formed 
in vivo through the metabolism and process
ing of drugs, dietary agents, and amino acids 
(O’Brien et al. 2005). Because of the constant 
presence of both endogenous and environ
mental formaldehyde exposure, coupled with 
its deleterious health effects, understanding 
the exposure response and biological basis 
of formaldehydeinduced health effects is of 
utmost importance.

A key mode of action that links formal
dehyde exposure to cancer involves dam
age to DNA (Lu et al. 2011; NTP 2011). 
Formaldehyde is a directacting genotoxic 
compound that induces DNA adducts, DNA–
protein crosslinks, DNA–DNA crosslinks, 
DNA singlestrand breaks, and gene mutations 
in cultured mammalian cells (NTP 2011). 

Likewise, formaldehyde inhalation exposure 
in vivo has been shown to cause increased 
DNA adduct formation in nasal tissue from 
nonhuman primates (Moeller et al. 2011) and 
rats (Lu et al. 2011). When DNA damage 
occurs in tumor suppressors or genes regulat
ing the cell cycle, carcino genesis may occur 
(Hanahan and Weinberg 2011). Mutations 
in the p53 tumor suppressor gene have been 
demon strated in formaldehydeinduced nasal 
squamous cell carcinomas in rats (Recio et al. 
1992). Cell proliferation associated with cyto
toxicity also plays a key role in formaldehyde 
carcinogenesis (Chang et al. 1983; NTP 2011). 
Systemsbased analyses employed to under
stand formaldehyde’s effects on cellular regula
tion should increase our current understanding 
of formaldehydeinduced disease.

We investigated possible epigenetic changes 
caused by formaldehyde exposure in order to 
test molecular mechanisms potentially under
lying formaldehydeinduced health effects. 
We previously showed that gaseous formal
dehyde is capable of significantly disrupting 
microRNA (miRNA) expression profiles in 
airway epithelial cells in vitro (Rager et al. 
2011). With this finding, we proposed that 
miRNAs may play key roles in formaldehyde
 induced effects in various cell types and sys
tems. These small molecules are a part of the 
epigenetic machinery (Iorio et al. 2010) regu
lating mRNA abundance and protein produc
tion (Friedman et al. 2009). By base pairing 
to target mRNAs, miRNAs can cause mRNA 
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Background: Formaldehyde is an air pollutant present in both indoor and outdoor atmospheres. 
Because of its ubiquitous nature, it is imperative to understand the mechanisms underlying 
formaldehyde- induced toxicity and carcinogenicity. MicroRNAs (miRNAs) can influence disease 
caused by environmental exposures, yet miRNAs are understudied in relation to formaldehyde. Our 
previous investigation demonstrated that formaldehyde exposure in human lung cells caused disrup-
tions in miRNA expression profiles in vitro.

oBjectives: Using an in vivo model, we set out to test the hypothesis that formaldehyde inhalation 
exposure significantly alters miRNA expression profiles within the nasal epithelium of nonhuman 
primates.

Methods: Cynomolgus macaques were exposed by inhalation to approximately 0, 2, or 6 ppm 
formaldehyde for 6 hr/day for 2 consecutive days. Small RNAs were extracted from nasal samples 
and assessed for genome-wide miRNA expression levels. Transcriptional targets of formaldehyde-
altered miRNAs were computationally predicted, analyzed at the systems level, and assessed using 
real-time reverse transcriptase polymerase chain reaction (RT-PCR).

results: Expression analysis revealed that 3 and 13 miRNAs were dysregulated in response to 2 and 
6 ppm formaldehyde, respectively. Transcriptional targets of the miRNA with the greatest increase 
(miR-125b) and decrease (miR-142-3p) in expression were predicted and analyzed at the systems 
level. Enrichment was identified for miR-125b targeting genes involved in apoptosis signaling. The 
apoptosis- related targets were functionally tested using RT-PCR, where all targets showed decreased 
expression in formaldehyde- exposed samples.

conclusions: Formaldehyde exposure significantly disrupts miRNA expression profiles within the 
nasal epithelium, and these alterations likely influence apoptosis signaling.
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degradation and/or translational repression 
(Friedman et al. 2009). Human miRNAs are 
estimated to regulate more than 60% of all 
proteincoding genes (Friedman et al. 2009). 
Because miRNAs play such pivotal roles in 
gene regulation, it is important to understand 
the influence formaldehyde exposure may have 
on miRNA expression signatures.

The present study is the first to investigate 
potential changes in miRNA expression pro
files induced by inhaled formaldehyde expo
sure in vivo. Cynomolgus macaques were 
exposed to target concentrations of 0, 2, or 
6 ppm formaldehyde. These concentrations 
represent potential occupational exposure 
levels: Formaldehyde levels up to and greater 
than 6 ppm have been measured in certain 
occupational settings including industries 
related to formaldehydebased resin produc
tion, plastic production, and biology/pathology 
laboratories (NTP 2011). Formaldehyde con
centrations of 2 ppm have also been measured 
in mobile homes (Salthammer et al. 2010). 
Genomewide microarray analysis of small 
RNA molecules within nasal tissue revealed 
that miRNA expression profiles were signifi
cantly disrupted by formaldehyde. To gain 
further information on the mechanistic con
sequences of miRNA changes, tran scrip tional 
targets of formaldehyde responsive miRNAs 
were predicted and assessed at the systems 
level. Taken together, this research suggests a 
novel miRNAmediated mechanism through 
which formaldehyde may induce alterations in 
biological effects.

Materials and Methods
Ethics statement. Cynomolgus macaques were 
treated humanely and with regard for alle
viation of suffering. Animals were exposed, 
sedated, and euthanized using protocols 
approved by the Lovelace Research Institute’s 
animal care and use committee.

Animals. Eight male cyno molgus macaques 
(Macaca fascicularis) were selected from the 
Lovelace Respiratory Research Institute col
ony. Animals were approximately 6 years of 
age and weighed between 4.48 and 8.56 kg. 
Animals were conditioned to wholebody expo
sure chambers for 30, 60, 180, and 360 min 
before the first day of exposure, as previously 
described (Moeller et al. 2011).

Formaldehyde exposures. Animals were 
exposed to formaldehyde over the course of 
2 days for 6 hr each day using wholebody 
exposure chambers. Target exposure con
centrations were 0, 2, and 6 ppm formal
dehyde. Exposure conditions were created 
by vaporizing [13CD2]paraformaldehyde. 
Formaldehyde was isotopelabeled for a pre
vious investigation (Moeller et al. 2011). 
Chamber concentrations were monitored by 
collecting samples with a Waters XpoSure 
Aldehyde Sampler cartridge (Milford, MA) 

every 5 min throughout each exposure period. 
Samples from the cartridges were analyzed 
using highperformance liquid chromatog
raphy with an attached detector monitoring 
ultraviolet absorbance at 360 nm (Lu et al. 
2011; Moeller et al. 2011). Two control ani
mals were placed in wholebody exposure 
chambers containing clean air. Three non
human primates were exposed to a target con
centration of 2 ppm formaldehyde, where the 
measured concentration averaged 1.9 ppm 
across the exposure periods. Three nonhuman 
primates were exposed to a target concen
tration of 6 ppm formaldehyde, where the 
measured concentration averaged 6.1 ppm 
across the exposure periods. For more detailed 
methods, see Moeller et al. (2011).

Sample collection. Approximately 15 min 
after the second exposure period, animals were 
serially sedated with Ketamine (10 mg/kg, 
intramuscular) and euthanized with Euthasol 
(> 1 mL/4.5 kg, intravenous). Animals under
went necropsy one at a time with each necropsy 
requiring approximately 45 min. All samples 
were collected within 3 hr of the exposure. 
Sample collection started immediately after the 
last exposure in order to parallel sacrifice and 
sample collection times used in our previous 
studies (Lu et al. 2011; Moeller et al. 2011). 
During necropsy, nasal epithelial tissue from 
the maxilloturbinate regions were collected, 
placed in RNAlater® RNA stabilization reagent 
(Qiagen, Valencia, CA), and stored at –80°C. 
Samples were shipped by overnight courier on 
dry ice to the University of North Carolina at 
Chapel Hill.

Sample processing. Small RNAs were 
isolated from nasal tissue samples. First we 
disrupted and homogenized the samples 
using a TissueRuptor (Qiagen) in the pres
ence of TRIzol (Invitrogen Life Technologies, 
Carlsbad, CA). We then isolated RNA using 
the miRNeasy® kit (Qiagen). Extracted RNA 
was quantified with a Nanodrop 1000 spec
trophotometer (Thermo Scientific, Waltham, 
MA) and its integrity verified with a 2100 
Bioanalyzer (Agilent Technologies, Santa 
Clara, CA). RNA was then labeled and 
hybridized to the Agilent Human miRNA 
Microarray (v1.0). This microarray assesses 
the relative expression levels of 534 miRNAs 
measured using 11,080 probesets. Microarray 
results were extracted using Agilent Feature 
Extraction software. Microarray data have 
been submitted to the National Center for 
Biotechnology Information (NCBI) Gene 
Expression Omnibus repository (Edgar et al. 
2002) and are available under accession num
ber GSE34978 (NCBI 2010).

Microarray analysis. Microarray data were 
normalized by quantile normalization. To 
eliminate background noise, miRNA probes 
with signal intensities < 40 (i.e., the median 
signal) across all replicates were removed. 

Differential expression was defined as a sig
nificant difference in miRNA levels between 
exposed versus unexposed samples, where 
three statistical requirements were set: a) fold 
change of ≥ 1.5 or ≤ –1.5 (average exposed vs. 
average unexposed); b) pvalue < 0.05 [analysis 
of variance (ANOVA)]; and c) a false discovery 
rate corrected qvalue < 0.1. ANOVA pvalues 
were calculated using Partek® Genomics Suite™ 
software (St. Louis, MO). To control the rate 
of false positives, qvalues were calculated as 
the minimum “positive false discovery rate” 
that can occur when identifying significant 
hypotheses (Storey 2003).

Real-time reverse transcriptase polymerase 
chain reaction (RT-PCR) confirmation of 
miRNA expression changes. To confirm 
formaldehydeinduced miRNA expression 
changes, we performed RTPCR using two 
miRNAs identified as the most increased in 
expression (miR125b and miR152) and the 
two miRNAs identified as the most decreased 
in expression (miR145 and miR1423p) 
after 6 ppm formaldehyde exposure. TaqMan® 
MicroRNA Primer Assays for hsamiR125b 
(ID 000449), hsamiR152 (ID 000475), hsa
miR145 (ID 002278), and hsamiR1423p 
(ID 000464) were used in conjunction with the 
TaqMan® Small RNA Assays PCR kit (Applied 
Biosystems, Carlsbad, CA). The same control 
and formaldehyde exposed samples from the 
microarray analysis were used for RTPCR, 
and samples were assessed in technical 
triplicate. The resulting RTPCR cycle times 
were normalized against the U6 housekeeping 
miRNA, and fold changes in expression were 
calculated using the ΔΔCt method. Statistical 
significance of the difference in miRNA 
expression levels between the formaldehyde
 exposed and unexposed samples was calculated 
using an ANOVA (Partek®).

Predicting targets of miR-125b and miR-
142-3p. We carried out computational pre
dictions of the mRNA targets of miR125b 
and miR1423 in order to understand the 
impact of formaldehyderesponsive miRNAs 
on gene expression levels. These two miRNAs 
were selected because they showed the largest 
increase (miR125b) or decrease (miR1423p) 
in expression after 6 ppm formaldehyde expo
sure. Here, TargetScanHuman release 5.2 
(Whitehead Institute for Biomedical Research, 
Cambridge, MA) algorithms were employed 
to identify potential matches between 3´ 
untranslated mRNA regions and miRNA seed 
sequences (Lewis et al. 2005). The resulting 
predicted miRNA × mRNA interactions were 
filtered for the probability of preferentially 
conserved targeting (PCT) ≥ 0.9. This PCT 
filter controlled for background conservation 
across mammals by accounting for mutational 
biases, dinucleotide conservation rates, and 
individual untranslated region conservation 
rates (Friedman et al. 2009).
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Pathway enrichment analysis of predicted 
targets. Network analysis was performed to 
understand the systemslevel response to form
aldehyde inhalation exposure possibly medi
ated via epigenetic (e.g., miRNA) regulation. 
For this analysis, the predicted mRNA targets 
of miR125b and miR1423p were overlaid 
onto a global interaction network. Networks 
were algorithmically constructed based on 
connectivity, as enabled through Ingenuity 
Pathway Analysis (Ingenuity Systems, 
Redwood City, CA). Canonical pathways 
within the constructed networks were then 
identified. Overrepresented pathways were 
defined as pathways than contain more targets 
than expected by chance, as calculated using 
the righttailed Fisher’s exact test. Pathways 
with enrichment pvalues < 0.05 were consid
ered significantly enriched with the predicted 
targets of miR125b or miR1423p.

Testing miRNA targets using RT-PCR. All 
apoptosisassociated genes (n = 4) predicted 
to be regulated by formaldehyde responsive 
miR125b, and all integrinlinked kinase 
(ILK)associated genes (n = 2) predicted to be 
regulated by formaldehyderesponsive miR
1423p, were tested at the gene expression level 
using RTPCR. QuantiTect Primer Assays 
were used with QuantiTect SYBR® Green 
PCR kits (Qiagen) and the LightCycler® 480 
(Roche Applied Science, Indianapolis, IN). 
Specifically, BCL2antagonist/killer 1 (BAK1; 
catalog Number QT00228508), caspase 2, 
apoptosis related cysteine peptidase (CASP2; 
QT01342509), integrin, beta 8 (ITGB8; 
QT00038507), mitogenactivated protein 
kinase kinase 7 (MAP2K7; QT00090545), 
myeloid cell leukemia sequence 1 (BCL2
 related) (MCL1; QT00094122), and the 
rapamycininsensitive companion of mTOR 
(RICTOR; QT00065793) were evaluated for 
potential changes in gene expression levels 
induced by formaldehyde exposure. Resulting 
RTPCR cycle times were normalized against 
the βactin housekeeping gene, and fold 
changes in expression were calculated using the 
ΔΔCt method. Statistical significance compar
ing the expression levels between exposed and 
unexposed samples was calculated using an 
ANOVA (Partek®).

Results
Formaldehyde disrupts miRNA expression 
profiles in nasal tissue. To study the effects of 
formaldehyde inhalation exposure, cyno molgus 
macaques were exposed to approximately 0, 2, 
or 6 ppm formaldehyde 6 hr/day for 2 days. 
After treatment, nasal epithelial tissue sam
ples were collected and assessed for genome
wide changes in miRNA expression profiles 
using the Agilent Human miRNA Microarray. 
Microarray analysis identified 3 miRNAs with 
significantly decreased expression levels upon 
exposure to 2 ppm formaldehyde (Table 1). In 

comparison, exposure to 6 ppm formaldehyde 
significantly disrupted the expression levels of 
13 miRNAs, represented by 15 array probe
sets (Table 1). Of the 13 miRNAs, 4 were sig
nificantly increased and 9 were significantly 
decreased in expression. Interestingly, the three 
miRNAs that were significantly decreased in 
response to 2 ppm formaldehyde (i.e., miR
1423p, miR145, and miR203) were also 
significantly decreased in response to 6 ppm 
formaldehyde.

RT-PCR confirmed formaldehyde- induced 
miRNA expression changes. RTPCR was per
formed to confirm that formaldehyde inha
lation exposure significantly disrupts the 
expression of miRNAs. Specifically, the two 
miRNAs most increased in expression (miR
125b and miR152) and the two miRNAs 
most decreased in expression (miR145 and 
miR1423p) in response to 6 ppm formal
dehyde were validated using this alternative 
method. Comparing the exposed versus unex
posed samples confirmed that miR125b and 
miR152, were, indeed, significantly (p < 0.05) 
increased in expression upon exposure to 

6 ppm formaldehyde (Figure 1). The microar
ray analysis’ stringent multiple test correc
tion filter excluded miR125b from the list of 
miRNAs significantly differentially expressed 
by 2 ppm formaldehyde. However, RTPCR 
analysis showed that miR125b was signifi
cantly increased in expression in the 2 ppm 
formaldehyde exposed animals. Similar con
firmation was observed for miR145 and 
miR1423p, where expression levels were sig
nificantly (p < 0.05) decreased following 6 ppm 
formaldehyde exposure (Figure 1). Microarray 
analysis also showed that the expression level 
of miR145 was significantly decreased upon 
exposure to 2 ppm form aldehyde. This change 
in expression was verified with RTPCR 
(Figure 1).

Transcriptional targets of miR-125b and 
miR-142-3p were predicted. To understand 
genomic changes regulated via miRNAs that 
formaldehyde inhalation exposure may ini
tiate, we computationally predicted mRNA 
targets of miR125b and miR1423p. These 
miRNAs were selected for further investigation 
because they showed the highest increase or 

Table 1. Formaldehyde inhalation exposure in nonhuman primates significantly disrupts the expression 
levels of 13 unique miRNAs, represented by 15 array probesets.

miRNA
Agilent array 

feature number

2 ppm formaldehyde 6 ppm formaldehyde

log2FC p-Value q-Value log2FC p-Value q-Value
miR-125b 2637 0.44 6.1 × 10–1 0.666 2.86* 2.2 × 10–4 0.090
miR-152 1548 0.79 3.0 × 10–3 0.297 1.29* 1.3 × 10–4 0.072
miR-219-5p 1180 0.36 8.8 × 10–2 0.451 1.22* 1.7 × 10–4 0.075
miR-532-5p 1259 0.35 3.4 × 10–2 0.390 1.09* 8.1 × 10–5 0.055
miR-520f 14457 –0.61 3.3 × 10–4 0.188 –0.77* 1.4 × 10–4 0.072
miR-26b 12607 –1.13 9.3 × 10–5 0.146 –1.38* 5.2 × 10–5 0.050
miR-140-5p 12026 –0.69 3.6 × 10–4 0.188 –1.56* 2.4 × 10–5 0.036
miR-22 12927 –0.69 4.8 × 10–4 0.203 –1.70* 2.6 × 10–5 0.036
miR-374a 14431 –1.68 1.2 × 10–4 0.148 –1.77* 1.1 × 10–4 0.067
miR-203 12162 –1.98* 4.7 × 10–5 0.098 –2.11* 4.1 × 10–5 0.046
miR-203 11451 –1.75 1.0 × 10–4 0.146 –2.12* 6.7 × 10–5 0.055
miR-142-3p 12366 –4.12* 1.1 × 10–6 0.009 –2.92* 1.6 × 10–6 0.011
miR-29a 13448 –3.24 2.5 × 10–4 0.188 –3.15* 2.6 × 10–4 0.099
miR-145 15649 –3.15* 3.0 × 10–5 0.098 –3.56* 2.6 × 10–5 0.036
miR-142-3p 14658 –2.81 3.1 × 10–4 0.188 –5.01* 1.8 × 10–4 0.075

FC, fold change.
*p < 0.01, q < 0.1 for FC relative to unexposed samples.
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Figure 1. RT-PCR confirms the altered expression of selected miRNAs upon exposure to formaldehyde. 
Data are presented as mean fold changes (exposed/unexposed) (± SE) in gene expression.
*p < 0.05 compared with 0 ppm control.
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decrease in expression upon exposure to 6 ppm 
formaldehyde, respectively. In addition, their 
differential expression was confirmed through 
RTPCR analysis. Using seed match–based 
algorithms, a total of 132 genes were predicted 
to be targeted by miR125b [see Supplemental 
Material, Table S1 (http://dx.doi.org/10.1289/
ehp.1205582)]. In comparison, only 13 genes 
were predicted to be targeted by miR1423p 
(see Supplemental Material, Table S2).

Apoptosis signaling is associated with miR-
125b predicted targets. Enriched canonical 
signaling pathways were evaluated for the 
132 predicted targets of miR125b in order 
to evaluate the potential effects of formalde
hyde exposure at the systems level. Through 
this network analysis, 11 canonical pathways 
were identified as significantly overrepresented 
amongst the networks constructed using the 
predicted targets of miR125b (Table 2). The 
two pathways of highest significance were 
sphingolipid metabolism (p = 0.003) and 
apoptosis signaling (p = 0.003) [Table 2, see 
also Supplemental Material, Figure S1 (http://
dx.doi.org/10.1289/ehp.1205582)].

Apoptosis- related miR-125b targets 
are decreased in expression. All four of the 
apoptosis related mRNA molecules predicted 
to be targeted by miR125b were tested at 
the gene expression level using RTPCR. As 
miR125b was increased in expression, it was 

anticipated that its potential targets would 
be decreased in expression after formalde
hyde exposure. Three of the evaluated targets, 
BAK1, MAP2K7, and MCL1, showed signifi
cantly (p < 0.05) decreased expression levels 
in response to both 2 and 6 ppm formalde
hyde exposures (Figure 2A). CASP2 showed 
signifi cantly decreased expression in response 
to 2 ppm formaldehyde. CASP2 expression 
was also decreased in response to 6 ppm form
aldehyde, but was not statistically significant 
(p = 0.15) (Figure 2A). Altogether, all four 
of the apoptosis related mRNAs predicted to 
be regulated by miR125b showed decreased 
expression upon exposure to formaldehyde.

ILK s ignal ing  i s  a s soc iated with 
 miR-142-3p predicted targets. To further 
assess the potential effects of formaldehyde 
exposure at the systems level, enriched canoni
cal signaling pathways were evaluated for the 
13 predicted targets of miR1423p. Three 
canonical pathways were identified as signifi
cantly overrepresented within the predicted 
targets of miR1423p [see Supplemental 
Material, Table S3 (http://dx.doi.org/10.1289/
ehp.1205582)]. The pathway of highest signif
icance was ILK signaling (p = 0.008).

ILK- related miR-142-3p targets are 
altered in expression. The two ILK signaling– 
related mRNA molecules predicted to be tar
geted by miR1423p were tested at the gene 

expression level using RTPCR. Because miR
1423p was decreased in expression, it was 
anticipated that its potential targets would 
have increased expression after formalde
hyde exposure. One of the evaluated targets, 
ITGB8, showed significantly increased expres
sion in response to 6 ppm form aldehyde 
exposure (Figure 2B). Transcript levels for the 
other predicted target, RICTOR, were signifi
cantly decreased in response to 2 and 6 ppm 
formaldehyde exposure (Figure 2B).

Discussion
This study is the first to evaluate form al
dehyde’s influence on miRNA expression sig
natures in vivo. In order to study the effects of 
formaldehyde inhalation exposure, nonhuman 
primates (cyno molgus macaques) were exposed 
for 6 hr/day over a course of 2 days to approxi
mately 0, 2, or 6 ppm formaldehyde. These 
exposure levels were selected based on previous 
investigations showing that exposure to 2 and 
6 ppm formaldehyde caused DNA–protein 
crosslinks (Casanova et al. 1991) and DNA 
adducts (Moeller et al. 2011) to form within 
the nasal mucosa of nonhuman primates. 
The use of nonhuman primates as our animal 
model is advantageous because the nasal gross 
anatomy and pattern of airflow are similar 
between nonhuman primates and humans 
(Harkema et al. 2006). Furthermore, there is 
an extremely high degree of similarity in DNA 
coding and noncoding sequences between 
macaques and humans (Walker 2008).

After exposure, animals were euthanized, 
and nasal epithelial samples from the maxillo
turbinate region were collected and assessed for 
genomewide changes in miRNA expression 
profiles. Samples from the maxillo turbinate 
region were used because inhaled formalde
hyde is maximally absorbed within this region 
(Kepler et al. 1998). In addition, our previ
ous investigation revealed that cyno molgus 
macaques exposed to isotopelabeled [13CD2]
formaldehyde showed detectable amounts 
of exogenous (i.e., induced by formaldehyde 
exposure) and endogenous DNA adducts 
within nasal samples collected from the maxil
loturbinate (Moeller et al. 2011). Specifically, 
0.26 ± 0.04 and 0.41 ± 0.05 exogenous 
N2hydroxymethyldG/107 dG were present 
in nonhuman primates exposed to approxi
mately 2 and 6 ppm formaldehyde, respectively 
(Moeller et al. 2011), and 2.05 ± 0.53 and 
2.49 ± 0.39 endogenous N2hydroxymethyl
dG/107 dG adducts were present. Furthermore, 
the respiratory nasal turbinate region of rats 
exposed to formaldehyde is a site of squamous 
cell carcinoma formation (Kerns et al. 1983; 
Monticello et al. 1996).

We measured the expression levels of > 500 
miRNAs across two unexposed, three 2 ppm 
formaldehyde exposed, and three 6 ppm 
formaldehyde exposed nonhuman primates. 

Table 2. Pathways significantly associated with the predicted targets of miR-125b.

Canonical pathways p-Value miR-125b predicted targets
Sphingolipid metabolism 0.003 ACER2, FUT4, NEU1, SGPL1
Apoptosis signaling 0.003 BAK1, CASP2, MAP2K7, MCL1
Glycosphingolipid biosynthesis—globoseries 0.012 FUT4, ST8SIA4
Glycosphingolipid biosynthesis—neolactoseries 0.012 FUT4, ST8SIA4
Glycosphingolipid biosynthesis—ganglioseries 0.014 FUT4, ST8SIA4
N-glycan degradation 0.014 MAN1B1, NEU1
O-glycan biosynthesis 0.017 FUT4, GCNT1
N-glycan biosynthesis 0.037 FUT4, MAN1B1
Sphingosine-1-phosphate signaling 0.039 ACER2, CASP2, RND2
TNFR1 0.042 CASP2, TNFAIP3
Semaphorin signaling in neurons 0.048 RND2, SEMA4D
Abbreviations: ACER2, alkaline ceramidase 2; FUT4, fucosyltransferase 4; GCNT1, glucosaminyl (N-acetyl) transferase 
1, core 2; MAN1B1, mannosidase, alpha, class 1B, member 1; NEU1, sialidase 1 (lysosomal sialidase); RND2, Rho family 
GTPase 2; SEMA4D, sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic 
domain, (semaphorin) 4D; SGPL1, sphingosine-1-phosphate lyase 1; ST8SIA4, ST8 alpha-N-acetyl-neuraminide alpha-
2,8-sialyltransferase 4; TNFAIP3, tumor necrosis factor, alpha-induced protein 3; TNFR1, tumor necrosis factor binding 
protein 1.
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Figure 2. RT-PCR shows the altered expression of (A) apoptosis signaling-related genes predicted to be 
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Although this sample size was robust enough 
to detect formaldehyderesponsive miRNAs, 
we recog nize that the sample size may have 
limited the power to detect additional changes 
in miRNA expression. For the genomewide 
analysis, a human miRNA microarray was 
used because a miRNA microarray is not cur
rently available for nonhuman primates. This 
array is suitable for these experimental pur
poses based on the high degree of similarity 
in DNA sequences, as well as conserved basal 
gene expression profiles, between humans 
and cyno molgus macaques (Walker 2008). 
Baseline human miRNA expression pat
terns have even been shown to correlate well 
with cyno molgus macaque miRNA patterns 
using human miRNA microarrays (Montag 
et al. 2009). Furthermore, a previous study 
compared miRNAs identified in the rhe
sus macaque (Macaca mulatta) genome to 
human homologs and found that 38% of the 
miRNAs showed 100% homology in precur
sor sequences (Yue et al. 2008). The remaining 
62% of the miRNAs showed between 90% 
and 100% sequence homology (Yue et al. 
2008). Nevertheless, we recognize that certain 
cyno molgus macaque–specific miRNAs may 
not be accounted for in these analyses. This 
results in the potential for an under estimation 
of formaldehyde’s true impact on genome
wide miRNA profiles in this study. Despite 
these potential limitations, a set of 13 miRNAs 
with significant differential expression upon 
exposure to 2 and/or 6 ppm formaldehyde 
were identified.

Two of the 13 formaldehyderesponsive 
miRNAs were among those that we previously 
showed as altered in vitro by formaldehyde, 
namely miR26b and miR1405p (Rager et al. 
2011). This overlap in response suggests that 
in vitro models may show some responses in 
common with in vivo models at the miRNA 
level. Many of the formaldehyde responsive 
miRNAs in the nonhuman primate have 
known relationships to cancer, where 6 of the 
13 formaldehyderesponsive miRNAs have 
been identified as differentially expressed in 
human nasopharyngeal carcinoma. More spe
cifically, miR1423p, miR145, miR152, 
miR203, miR26b, and miR29a have all 
been shown to have altered expression levels in 
nasopharyngeal cancer tissue in comparison to 
noncancerous tissue (Chen et al. 2009; Li et al. 
2011; Sengupta et al. 2008; Wong et al. 2012).

In order to evaluate the effects of form
aldehyde inhalation exposure at the systems 
level, molecular targets of miR125b and miR
1423p were computationally predicted and 
analyzed for pathway enrichment. We focused 
our systemsbased analysis on miR125b and 
miR1423p because these miRNAs showed 
the highest increase and decrease in expres
sion, respectively, upon exposure to 6 ppm 
formaldehyde through microarray analysis and 

were confirmed using RTPCR analysis. A 
total of 132 genes were predicted to be tar
geted by miR125b, and thereby decreased 
at the expression level. Far fewer genes were 
identified for miR1423p, where 13 genes 
were predicted to be targeted by miR1423p, 
and thereby increased at the expression level.

Canonical pathway enrichment analysis 
revealed a significant association between the 
predicted targets of miR125b and apoptosis 
signaling. To further test this finding, we evalu
ated the gene expression levels of all four apop
tosis signaling–related genes predicted to be 
targeted by miR125b, namely BAK1, CASP2, 
MAP2K7, and MCL1. As predicted, all four 
genes showed decreased expression levels in the 
formaldehyde exposed versus unexposed sam
ples. Two of the apoptosis related genes pre
dicted to be regulated by miR125b, MAP2K7, 
and MCL1 have also been shown to have sig
nificantly altered expression levels in the nasal 
epithelium of rats exposed to  formaldehyde 
(Andersen et al. 2010).

The observed decreased expression of genes 
involved in apoptosis signaling suggests a pos
sible link between formaldehyde exposure and 
altered regulation of cell death. For example, 
BAK1 and CASP2 are both proapoptotic and 
have been shown to induce apoptosis in vitro 
and in vivo in several cell types (Kumar 2009; 
Pataer et al. 2000). While the evaluation of 
proteins encoded by the apoptosis related 
genes would further support these findings, 
such an assessment was not possible here 
because proteins were not collected. Still, a 
similar finding has been observed in the nasal 
epithelium of rats, where nasal instillation of 
liquid formaldehyde decreased the expression 
levels of proapoptotic genes (Hester et al. 
2003). These findings are of high interest 
because impaired apoptosis can lead to cel
lular transformation and cancer development 
(Hanahan and Weinberg 2011).

Other pathways were also identified as 
enriched among the predicted targets of miR
125b, including sphingolipid metabolism. 
Sphingolipids are an abundant class of lipids 
present at high levels within eukaryotic mem
branes (Bartke and Hannun 2009). Although 
sphingolipids were first recognized for their 
structural roles in membrane formation, 
more recent work has shown that sphingo
lipid metabolites are involved in the regula
tory signaling of various biological processes, 
including apoptosis, cell cycle arrest, inflam
mation, necrosis, and senescence (Bartke and 
Hannun 2009).

Pathway analysis of the predicted targets 
of miR1423p revealed an enrichment for 
ILK signaling. It is important to note that this 
enrichment was not as significant as the enrich
ment between miR125b and apopto sis signal
ing. ILK signaling is involved in a variety of 
processes within epithelial cells, including cell 

survival, cell proliferation, and cell adhesion to 
the extracellular matrix (Gilcrease 2007).

To test our prediction that formaldehyde 
alters ILK signaling, the expression levels of 
genes involved in ILK signaling were assessed, 
including ITGB8 and RICTOR. Because 
miR1423p was decreased in expression 
by 6 ppm formaldehyde, we anticipated its 
potential targets to show increased expression. 
As anticipated, ITGB8 showed significantly 
increased expression after 6 ppm formalde
hyde exposure. ITGB8 has been implicated 
in several biological processes, including air
way epithelial cell proliferation (Fjellbirkeland 
et al. 2003) and airway remodeling involv
ing the extracellular matrix (Kitamura et al. 
2011). One of the predicted targets, RICTOR, 
did not show increased transcript levels in 
formaldehyde exposed samples. This finding 
suggests that a) miR1423p may not influ
ence RICTOR under the tested conditions, 
b) miR1423p may influence RICTOR pro
tein levels by blocking RICTOR translation, or 
c) other mechanisms besides miRNA regula
tion may influence RICTOR expression. Some 
of these scenarios are supported in a recent 
study where miRNAs were computationally 
predicted to target hepatic nuclear factor 4α 
(HNF4α) (Ramamoorthy et al. 2012). The 
previous research demonstrated that many 
of the tested miRNAs successfully targeted 
HNF4α. In addition, some of the miRNAs 
targeted HNF4α by blocking HNF4α trans
lation, causing the reduced expression of 
HNF4α protein while leaving transcript levels 
unchanged (Ramamoorthy et al. 2012).

It is important to note that these results 
do not demonstrate that miR125b directly 
decreases the expression of BAK1, CASP2, 
MAP2K7, and MCL1 upon exposure to 
formaldehyde, nor that miR1423p directly 
increases the expression of ITGB8. Indeed, 
this would be difficult to demonstrate in vivo. 
Rather, we show that formaldehyde is associ
ated with the increased expression of miR125b 
and the decreased expression of miR1423p, 
and decreased or increased expression of their 
respective target genes. However, other stud
ies have confirmed some of these specific 
miRNA × mRNA interactions. For example, 
miR125b has been shown to directly tar
get BAK1 and downregulate its expression 
in prostate cancer cells (Shi et al. 2007) and 
breast cancer cells (Zhou et al. 2010). Our 
study thereby employed bioinformatics based 
approaches to increase knowledge on the inter
play between exposure responses, epigenetics, 
and signaling pathways.

Conclusions
The present study demonstrates that formalde
hyde inhalation exposure significantly disrupts 
miRNA expression profiles within the nasal 
epithelium in vivo. Systemslevel analysis of 
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the transcriptional targets predicted to be regu
lated by formaldehyderesponsive  miR125b 
and miR1423p revealed the highest enrich
ment between genes involved in apoptosis 
signaling and miR125b. Apoptosis related 
gene targets of miR125b were functionally 
validated, showing altered transcriptional lev
els after exposure to formaldehyde in the nasal 
epithelium. These results provide evidence for 
a relationship between formaldehyde exposure 
and altered signaling of the apoptotic machin
ery, likely regulated via epigenetic mecha
nisms. These changes in apoptosis related 
signaling are of high importance because an 
inappropriate balance between cell death and 
survival heavily influences cellular disease state. 
Future research will compare these changes 
to potential formaldehydeinduced changes 
occurring in tissues collected from sites distal 
to the respiratory tract in vivo. These compari
sons may provide key information related to 
the pathophysiological mechanisms of action 
of formaldehyde.
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